NSSDF 2011

Correlation Using Pair-wise Combinations of Multiple Data Sources and Dimensions at Ultra-Large Scales

THE OVERALL CLASSIFICATION OF THIS BRIEFING IS UNCLASSIFIED

Approved for public release; distribution is unlimited

Jonathan Larson Kathleen Lossau Potomac Fusion, Inc Austin, TX

Dale Walsh MITRE Corporation McLean, VA

Technical Focus

- Current analysis relies heavily on SME knowledge
- Need for automated discovery of non-biased pattern and relationship detectors
- Need for large scale data analytics
 - Traditional single machine data warehousing solutions struggle with scale
 - Data locality requirements cause parallelization challenges
 - Approach to multidimensional database (MDD) implementation in the cloud
 - Using data denormalization techniques to construct planes of enrichment in a distributed environment
- Ability to apply basic analytic techniques at massive scale
 - Supporting massive combinatorial analysis (ranging into the trillions of comparisons)
 - Assorted distance matrix calculations of feature vectors
 - Covariance / Correlation / Adjacency matrix calculations

Hypercube Introduction

MDD Implementations

Hypercube Rollups

- Examples of aggregate rollups
 - Suppose a timestamp of 12:21:06 on January 6, 2011
 - Rollup to Minute / Hour / Day / Month / Week / Day of Week
 - Suppose a latitude / longitude coordinate
 - Rollup to City / District / County / Province / Country
- Aggregation and subsequent serialization greatly expedites derivative analytics – IE: detecting patterns based on day of week on a per province basis. Reduces data footprint for subsequent analytics by orders of magnitude.

Planes of Enrichment

NSSDF 2011 Tier 65 45 1st Tier Khalid Khalid Sheikh Base Plane of Data

UNCLASSIFIED

Planes of Enrichment - Continuous

Enrichment

There is no steady state to the system. Each enrichment triggers additional enrichment.

Large Data Analytic Framework

NSSDF 2011

Distributing analytic processing across a cloud of machines using open source technologies

Correlation Analytics

NSSDF 2011

Example correlation scenario: Alert keyword hit frequency

	Aid Group Bravo IED Explosion Mohammad					
1	0	0	1			
2	18	0	26			
3	10	0	22			
4	2	15	0			
5	0	8	1			
6	0	1	0			
7	0	0	0			

Trend Lines for keyword hits

Day

Pairwise correlation matrix for keyword hit trends -Correlations > .9 in **bold**

	Aid Group	IED Explosion	Mohammad
Aid Group	1	-0.29214	0.964963
IED Explosion	-0.29214	1	-0.3997
Mohammad	0.964963	-0.3997	1

Pairwise correlation matrix for keyword hit trends with 2 day lag on y-axis -Correlations > .9 in **bold**

	Aid Group	IED Explosion	Mohammad
Aid Group	-0.09762	-0.31254	-0.09152
IED Explosion	0.999007	-0.32393	0.965013
Mohammad	-0.25296	-0.27041	-0.20954

October 2011

Pairwise Combinatorial Analysis

- Combinations build out at ((N^2) N)/2 pairwise comparisons where N is the number of feature vectors being analyzed.
- For lag window calculations, L*(N^2) pairwise comparisons are needed where N is the number of feature vectors being analyzed and L is the number of lag windows being tested.
- Comparisons ideally require data locality of all data in the same location. Thus, if this exceeds a single machine's RAM specifications, efficient calculation becomes very difficult.
- We have successfully test this technique in a distributed system into the order of trillions of vector value comparisons.

Next Steps

- Investigation into real time processing Brisk (Cassandra based HDFS)
- Better use of estimation / approximation algorithms (IE: covariance metric estimation)
- Further leveraging cloud based AI packages (IE: Mahout)

UNCLASSIFIED

NSSDF 2011

Questions?