
A Survey of Big Data Methods, Assessments, and Approaches
Sotera Defense Solutions

November 2012

Abstract

The purpose of this survey was to determine how to best
match technology platforms to classes of analytics. Several
prominent Big Data technology stacks were compared using a
set of diverse use cases that commonly occur in real world
data. We perform a set of quantitative benchmarks to
compare the technology stacks and also include a qualitative
assessments of lessons learned.

1 Introduction

For XDATA, we set out to produce a series of benchmarks to
provide quantitative comparisons between different “Big
Data” technology approaches. This evaluation not only
includes an analysis of the runtime associated with a
particular approach, but also considers the code complexity
and overall development time of said code. Given that
analytics span a wide range of capabilities, the evaluation
must account for technologies that are purpose built to
accommodate specialized models and analytic approaches.
In other words, we must be careful not to use one tool for
every problem or else we run the risk of “forcing a square peg
into a round hole” - to use a phrase from British novelist
Edward Lytton.

In this paper we survey several popular “Big Data”
technologies and paired them with a handful of analytical
case studies. The technologies that we evaluated ranged
from Hadoop MapReduce approaches, to RAM based
platforms, to Bulk Synchronous Parallel techniques.
Specifically, the following technologies were leveraged in our
current work:

• Hadoop Streaming (MapReduce)
• Apache Hive (MapReduce)
• Cascalog (MapReduce)
• Mahout (MapReduce)
• R (Radoop / RHadoop / rPy / R - MapReduce)
• Giraph (Bulk Synchronous Parallel)
• Spark (in-memory cluster computing)

Given the technologies above, for each case study we
attempted to match the most appropriate technology stack
to the problem and provide both qualitative and quantitative
evaluation as to their appropriate usage patterns. Before
describing each of these approaches, it is important to note
that these are initial prototypes and that full optimization

may not have been attained in each case. However,
reasonable effort was exercised in each case to optimize each
approach wherever possible.

As a baseline, we chose four disparate analytic models for
analysis and implementation. Each of these analytics served
as an example implementation strategy and paradigm. The
use case analytic models chosen for evaluation are as follows:

• N² Calculation – For the ultimate test of scaling
behavior, we chose an analytic model that innately
does not scale. Problems that are O(N²) are certainly
a challenge, especially due to data locality issues.
For this experiment, we calculated the correlation
co-efficient of a set of time series vectors against
itself. This was implemented with two approaches:

o Brute Force on many different technology
platforms

o Approximation using Google’s published
technique for Google Correlatei

• Time Series – This use case is focused on data
sources that are a time series. The case study
focused on an anomaly detection algorithm and
leveraged Auto-Regressive Integrated Moving
Average (ARIMA)ii.

• Data Aggregation – Representative of the analysis
typically done in the Business Intelligence (BI) world,
this use case focused on applying aggregation
techniques to tabular data. Two primary techniques
were specifically implemented:

o Dwell Time
o Aggregate Micropathing

• Graph Traversal Analysis – To represent a network
based structure and analytic, we also targeted a
graph traversal based algorithm. For this analytic,
we used a time-based transaction network and
analyzed it for time-restricted graph loop detection.

2 Implementation

In this section, we detail the various technical
implementations for each of the case studies.

2.1 N² Calculation

This analytic was the simplest of our case studies and
warranted an approach on a wide variety of Big Data
technology platforms. The core principle of the analytic is a

full outer join of data against itself. The dataset used for this
study was the fictionalized VAST 2012 data, which contained
the health status (an integer value) of various IP addresses at
15 minutes intervals. These health ratings were constructed
into a vector, where each subsequent vector position
denoted the health for the next 15 minute interval. The
length of each vector was 192 and we had 1 million IP
addresses to sample from. For analysis, we would pull
different sized sets of IP addresses from this source dataset
to evaluate scaling performance.

The algorithm used for this was Pearson product-moment
correlation coefficient and was applied for every unique
pairing of IP addresses in a given set. Pearson’s correlation
ranges from -1 to +1 with 0 meaning no correlation, +1
meaning perfect positive correlation, and -1 meaning perfect
negative correlation. Calculating this pairwise between all IP
addresses in a given set poses an O(N²) problem and can also
show how data locality affects performance.

For simplicity and to provide an accurate baseline, this
was first implemented in RAM by using a Python NumPy
script. All vectors were paired together in a matrix and sent
into NumPy’s corrcoef function, which performs the
calculation. While this approach obviously doesn’t scale, it
provided us a baseline of results.

Apache Hive was our next implementation. For this
approach, we used Hive’s built in Hadoop streaming
capability to parallelize the RAM based version of the
problem. First, all of the vectors were loaded into Hive – one
row per vector. Then, Hive performed a full outer join on all
rows and sent the joined output to the same Python NumPy
corrcoef function for evaluation and output.

Mahout, which is a popular MapReduce based Artificial
Intelligence library that runs on Hadoop, was the next choice
for evaluation. We chose this library for two reasons. First, it
was designed and optimized for this type of analysis.
Secondly, it has a built-in Pearson’s matrix correlation engine.
To complete this task, we simply took the vectors and loaded
them into a Mahout formatted HDFS file and called Mahout’s
“rowsimilarity” option with the
SIMILARITY_PEARSON_CORRELATION argument selected to
produce its results.

Cascalog, a Clojure-based technology that has been
gaining traction in industry, implemented a similar strategy to
that of Hive by using a full outer join. Each vector was sent in
as a row and all rows were combined against one another.
When the two vectors were combined, the Apache Commons
Math library was then used to calculate correlation between

the two vectors. While leveraging a similar approach to Hive,
the nature of the Lisp-inspired functional language yielded a
completely different development experience.

Giraph was the next technology to explore as it
represented a fundamentally different approach using its
Bulk Synchronous Parallel (BSP) methodology. Giraph
operates such that it takes in a graph of data, shards that
data across the machines, and then elevates that entire graph
in RAM for expedient calculation. As such, each vector was
loaded into a vertex within a graph and each vertex sent its
data as a message to every other vertex with an ID higher
than it (so as to prevent duplicated calculation). Whenever a
vertex receives a message with a vector of data, it uses the
Apache Commons Math library to calculate the correlation
between the received vector and its own data.

Spark was the last technology that we used on this
analytic use case. Again, the full outer join strategy was used
and the results were piped into the Apache Math Commons
Library for evaluation. Spark is Scala-based and provided a
very natural interface for performing this join operation.

 Finally, attempts were made to also build the analytic in
the R-based RHIPE and RHadoop platforms. However, after
many repeated failed attempts to get these technologies to
compile, build, and operate on a virtual machine with all of
the previous technologies listed, this was abandoned. This
was largely due to the specific version requirements of
technology stacks for each of these (version requirements for
R, Java, Hadoop, etc) as well as other unrelated build
problems. The burdensome weight of the setup paired with
the short timeframe convinced us to pass on these
technologies for the moment – especially since they should
exhibit similar performance to the other MapReduce
approaches described above. These technologies will be
revisited in future work.

 This case study was used both for the gathering of
benchmarks and was also used to explore approximation
methodologies as discussed in the Approximation and
Evaluation section.

2.2 Time Series

This use case focused on how to analyze time series data on
big data platforms. The obvious approach to solve this
problem application was simply to leverage a MapReduce
framework around some time series analysis library. In this
case, we leveraged R to perform our time series analysis and
wrapped it in a MapReduce architecture for parallelized
execution. Whereas the correlation engine compared time

series vectors pairwise, the goal of this use case was to
analyze each individual vector and discover anomalous
activity. For this, we used flight records data that provides
the history of every airplane take-off and landing since 1987.
Our goal was to detect when there were major events that
disrupted air traffic travel. Each vector represented an
airport and each element within the vector represented the
total number of flights that had taken off within that Year-
Month-Day-Hour.

To determine anomalous activity, we decided to leverage
autoregressive integrated moving average (ARIMA), since it
incorporates both aspects of seasonality and moving
averages. The ARIMA was calculated for each vector using
the (p,d,q) model parameters as automatically provide by the
forecastiii library. Then, standardized residuals were
extracted and filtered to keep events that constituted a +/-4
stddev to find the events.

The vectors for each airport’s activity were first built and
processed in Hive, but were then sent via Hadoop Streaming
into a Python script that called the R based “forecast” library
(which provided auto-fit for the p,d,q variables in the ARIMA
model). Thus, the ARIMA algorithm always ran on a single
vector in a single thread, but Hadoop parallelized the job out
to many threads – allowing a parallelization factor equal to
the number of vectors in the dataset. Again, this was ideally
suited for a RHIPE / RHadoop implementation, but build and
environment conflict issues prevented usage of those
technologies. Instead, the Python scripts read / wrote
directly to and from R to process the data.

The end results can be seen with graphs like the one
shown in Figure 1, which shows how September 11, 2001
registers as a major deviation from normal activities. Also
note the spike in residuals due to storm activity and
Thanksgiving.

Figure 1: ARIMA Event Detection

2.3 Data Aggregation

These use cases provided the most straightforward and well
understood analysis problems in the parallelized
environment. Data warehousing technologies like Hive, Pig,
Cascalog, Impala, and Spark’s Shark were all built for this type
of purpose. This is the “Sweet Spot” for the MapReduce
architecture. For this use case we performed two styles of
data aggregation: dwell time analytics and aggregate
micropathing

2.3.1 Dwell Time Analytics

For this use case, we took ship tracking data and analyzed it
for places where vessels were stationary for prolonged
periods of time. To do this, we first gridded up the world into
small boxes divided by latitude / longitude. Then, we
measure the overall time spent stationary in each of those
boxes. For example, if a vessel remained stationary in the
grid box Bx,y for a 15 minute period, then Bx,y would have a
score in seconds of:

Bx,y = Bx,y + (15*60)

Thus, each grid cell captures the total “dwell” time spent by
ALL ships within that grid cell.

 This analytic was implemented with both a Hive and a
Cascalog variant that are very similar in operation. First, the
raw data is ingested and sorted by vessel ID. Next, for every
vessel ID, its entire track is analyzed to extract out time spent
stationary. Finally, that stationary time is mapped to an
overarching grid cell, which aggregates the total time spent.

2.3.2 Aggregate Micropathing

Figure 2: Aggregate micropathing example on Flickr data

This analytic is used to extract aggregate movement profiles.
For this analytic, we take any device data, such as vessel
movement data or even public photo metadata, and extract
overall patterns of movement. Figure 2 shows this analytic as
applied to the Flickr / Panoramio metadata in a prominent

world city. Red denotes high level of activity with frequent
photos – allowing you to discover movement patterns within
the city.

 This analytic is built via a four stage process (simplified for
ease of explanation as follows):

1. Group all records associated with a device / vessel
2. For each device, walk through each event ordinally

and extract and filter line segments based on
distance and time between events

3. Grid an entire region with “triplines” and compare
every line segment for crossings along any gridline

4. Aggregate all tripline crossings across the entire grid

This analytic was implemented using Hive, which took in the
raw data and then runs Hadoop Streaming or native Hive jobs
for each of the steps outlined above.

2.4 Graph Traversal

Figure 3: Enron email network

Network data is the primary goal of this last use case. While
MapReduce may be efficient for extremely shallow breadth-
based graph traversals, tabular processing methodologies like
MapReduce, traditionally do very poorly in the field of graph
analysis. This is especially the case when trying to perform
operations with an indeterminate traversal depth. As such,
for this use case, we took the public Enron email dataset and
created a graph where all vertices represent an email
address. The edges between pairs of vertices represent an
email transaction between those two vertexes at a distinct
point in time. For the analysis, we want to find a graph
traversal pathway from a Vertex A, such that all graph hops
are subsequent to one another in time and such that they
ultimately return to Vertex A. For example, suppose we have
a graph with Vertices A, B, C, D with the following edge list

Source Target Date
A B 2012-09-01
B C 2012-09-02
C A 2012-09-03

The edges above would form a graph loop A->B->C->A
through time, since all edges occur subsequent to one
another.
 While this algorithm is difficult to realize in a MapReduce
context, it is a completely natural fit for the Bulk Synchronous
Parallel approach of Giraph or Spark’s Bagel. As such, Giraph
was used to load the Enron email graph (Figure 3 shows an
image of that email network) into RAM and leverage BSP to
solve this problem. On the first superstep, each node
broadcasts messages to each of its edges. On every
subsequent superstep, each vertex checks its incoming
message’s dates and sees if it has any outgoing edges with a
greater date to propagate forward. If a message ever reaches
the node that originally sent it out, then that message is
halted and recorded as a loop. Currently, the algorithm has a
parameter that determines the depth of traversal that will be
conducted. Furthermore, random walks and graph sampling
may be leveraged for greater efficiency.

4 Approximation

When initially building out the brute force correlation engine
mentioned in Section 2.1, there was an important question as
to how we would manage an algorithm that scaled up at
O(N2). For this, we looked to the work that Google
performed when they built their system Google Correlate.
Google Correlate is an engine that performs an
approximation of the pairwise correlation at orders of
magnitude faster than O(N2). More information can be
obtained by reading their publicationi.

 To quickly recap the methodology, the incoming vectors
are transformed through M x P Gaussian IID matrices and
then run through k-means clustering. Vector quantization on
the vectors using those cluster center points then provide an
approximate distance that can be compared to test series
(thus providing a massive dimensionality reduction).

 This capability was built up entirely within Spark (both the
training and test capability), as we needed rapid and
interactive response capabilities. In the future, it might be
possible to use Cloudera’s Impala technology as another
alternative. The engine allows any arbitrary vector (of the
same length as the training vectors) to be inserted into the
engine for analysis. In real time, the engine will return all the
vectors that were found to be closest via the approximation
metric.

5 Evaluation

Evaluations on analytic runtimes, code complexity, and
development time all are major factors when deciding how to
implement a particular Big Data strategy. This section aims to
capture our observations of those factors.

5.1 Quantitative Correlation Engine Metrics

Building the correlation engine on many different platforms
allowed us to calculate quantitative performance for each
platform. For this, we leveraged Amazon’s EC2 cloud to run
our tests on the exact same hardware for each approach for
comparative analysis. The following hardware configurations
were used:

• 5 small instances
• 10 small instances
• 20 small instances
• 5 high memory extra large
• 5 high CPU extra large

Additionally, to measure the scale-up behavior on each
hardware profile, we used several different sized vector (4K,
8K, 16K, 32K, 64K) matrices that we sent in for processing.
Each approach was given no more than an hour to complete
end to end and the time to completion for each approach was
measured and recorded.

5.1.1 Brute Force

Figure 4, Figure 5, and Figure 6 below show the runtimes for
each hardware configuration and technical approach. Bars
are left blank where the technology / hardware configuration
exceeded the one hour time limit. It can be seen that Giraph
and Spark both perform the best – likely due to the fact that
they both pull the data completely into RAM before
processing. None of the processes finished the 32K or 64K
vector set and only Giraph and Spark made it to the 16K
vector set on the largest machine configurations.

Other observations to note are that when using Giraph,
you want to use as FEW nodes as possible – where each node
has the maximum amount of RAM you can put on it. This is
due to the network I/O hit at every BSP synchronization
stage. Conversely, MapReduce based implementations desire
the opposite – providing as many spinning disks as possible
attacking the problem will provide better speed and
performance.

Finally, it should be noted that Mahout works faster than
its other MapReduce counterpart (Hive). However, despite
Mahout being optimized and built for the correlation
problem, it scored as one of the worst performing
configurations due to its MapReduce backing.

Figure 4: Correlation runtimes for 4K vectors by hardware
configuration

Figure 5: Correlation runtime for 8K vectors by hardware
configuration

Figure 6: Correlation runtimes for 16K vectors by hardware
configuration

5.1.2 Approximation

The approximation engine showed considerable
improvement and speed-up when compared to the brute
force methods. Naturally, the better performance came at
the cost of recall, but this at least allows the user to decide
the correct balance between recall and time spent waiting for
the calculation.

The approximation engine fared much better in terms of
scaling up using a K = 255, M = 8, and P = 8 on the Google
Correlate algorithm. However, it should also be noted that
one should not keep these parameters the same as the data
size increases. Instead they should be adjusted upwards to
prevent a loss in recall. However, for the purpose of these
benchmarks, the settings above were used and computed at
every data size as seen in Figure 7.

The most notable improvement is that we actually
finished results on both the 32K vector and 64K vector sets.
To demonstrate what speedup this was, we compared the
best brute force times against the approximation engine and
also included measured the speedup (using the same K, M,
and P parameters above) and recall performance.

Figure 7: Correlation runtimes by vector size using a Spark-based
approximation engine

Figure 8: Correlation approximation engine speedup and recall

5.2 Qualitative Assessments and Observations

Aside from the quantitative metrics, we gathered a lot of
qualitative data on each of the technology stacks as well.
Development time and code complexity each were major
factors that are often overlooked in the evaluation of an
analytic technique. The following assessments are purely
opinion in nature and based on the work of a few people on
these key systems. These experiences may not be
representative of other people’s experiences with the same
system – especially for those specializing in one particular
system.

5.2.1 MapReduce vs. Bulk Synchronous Parallel

In general, a good rule of thumb is to use MapReduce for
tabular operations (aggregations and jobs that are easy to
split apart), but to use Bulk Synchronous Parallel (BSP) for any
traversal operations (i.e.: graph and networks). Some
network algorithms that perform only a single traversal or
two may be manageable in MapReduce, but the BSP
framework will yield far less complex code overall and should
be used instead.

5.2.1 Technology Stack Overviews

For MapReduce, we found Hive to be extremely efficient in
terms of the # of lines of code and also development time.
The development abstraction over writing a custom
mapReduce job is worthwhile and saves much code and time.
This does come at the cost of less flexibility and lower
performance on the cloud (sometimes much lower
performance for certain operations that are abstracted too
much). The code also tends to be messier and the pipeline
for moving data between processes is ugly at best. However,
by far, this was the most straightforward and easiest solution
for parallelizing problems with an obvious parallelization
solution (whether you’re piping data into R, NumPy, or some
other program). For ad hoc analytics development, where
the development of rapid analytics is the key, Hive is a clear
choice for these situations (or at least to get started).

Cascalog, a newer and more elegant option allows for
pipelining of the data from beginning to end. It also allows
for much better modularity and maintenance of code. Both
of these are a significant advantage over Hive. However, the
development times for simple algorithms tended to be longer
and the coded tended to be more complex. The Lisp-based
dialect also instills a steeper learning curve for those less
inclined to the functional programming world. Cascalog also
imposes steep performance penalties for the abstraction that
it provides – worse even than Hive in the cases we compared
them. That said, the elegance and maintainability should
keep Cascalog as a consideration moving forward. It is
constantly being improved upon and its ability to pipeline
data from beginning to end in a sane fashion is quite
attractive. As a final note, Cascalog was not benchmarked for
the correlation engine as there were troubles configuring it to
operate at scale. Rather than risk showing an incorrect
Cascalog performance metric, we decided to omit the
Cascalog metrics we have until we can further optimize its
execution. This is an ongoing point of future work.

While Mahout is a popular library, the code complexity
required just to get data in and out of the system is very
burdensome (and sometimes more code than the actual
analytic you are trying to use!). Mahout has a few nice
capabilities, but many of its capabilities work far better in
other platforms. A good case in point is the iterative k-means
clustering, which will work far better in something like Spark,
which can hold intermediate state in RAM. Mahout is useful
for very specific classes of analytics and only operates in a
MapReduce framework, which may not always be the best
approach for the problem at hand. That said, Mahout is
useful when you need an implementation of some machine
learning technique that someone has already implemented –

if you can stomach writing endlessly annoying serialization /
de-serialization code to get your data in and out.

Giraph and Bagel are both great options for the BSP side of
the world on graph processing. The simplicity and ingenuity
of the BSP compute method makes writing graph algorithms
extremely simple. Code complexity seems to be far less
burdensome in Bagel because Giraph requires a lot of custom
definition of input / output serialization procedures. Bagel
avoids a lot of the serialization procedures because it keeps
everything in RAM.

Spark showed as one of the most interesting solutions in the
assessment. Though it had a performance boost mainly
thanks to the distributed memory, the elegance of the Scala
code that was produced to build the analytics was
astoundingly clean when compared to all the other options.
Pair that with extremely fast computation time (especially for
iterative operations, like k-means) and it makes for a very
powerful system. Bagel and Shark also exist on top of Spark
which make the package even more attractive. In all our
tests, the Spark systems came out with the fastest results,
cleanest code, and least development complexity.

RHadoop and RHIPE look extremely promising, especially
when installing them on a new system by themselves.
However, trying to create an environment where these
technologies work alongside all of the other technologies
above can prove to be a challenge. Version requirements,
compiler issues, distributions, and other factors all played a
role in what can be summed up as an installation nightmare.
Provided they are installed on a system, the Divide and
Recombine features should be useful – though probably only
as a mirror to the other MapReduce process that can be done
using the other technology stacks. However, abstraction of
these capabilities is certainly desired and further
investigation and diligence is warranted in trying to get these
technologies operational alongside the other systems.

6 Future Work

Future work would include measuring the scale-out potential
on different hardware configurations for the Graph Loops,
Time Series, and Aggregation techniques. Additionally,
current efforts are working to provide benchmarks on the
correlation engine leveraging other technologies where
appropriate, such as:

• Spark’s Bagel
• GPU CUDA
• Storm (if we ever find streaming data)
• Impala

• RHIPE
• Cascalog

References

iMohebbi et al. “Google Correlate Whitepaper”. Google, pp.
5-6.

iihttp://en.wikipedia.org/wiki/Autoregressive_integrated_mo
ving_average

iii http://cran.r-
project.org/web/packages/forecast/index.html

http://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
http://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
http://cran.r-project.org/web/packages/forecast/index.html
http://cran.r-project.org/web/packages/forecast/index.html

