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Abstract 

The purpose of this survey was to determine how to best 
match technology platforms to classes of analytics.  Several 
prominent Big Data technology stacks were compared using a 
set of diverse use cases that commonly occur in real world 
data.  We perform a set of quantitative benchmarks to 
compare the technology stacks and also include a qualitative 
assessments of lessons learned.     

1 Introduction 

For XDATA, we set out to produce a series of benchmarks to 
provide quantitative comparisons between different “Big 
Data” technology approaches.  This evaluation not only 
includes an analysis of the runtime associated with a 
particular approach, but also considers the code complexity 
and overall development time of said code.  Given that 
analytics span a wide range of capabilities, the evaluation 
must account for technologies that are purpose built to 
accommodate specialized models and analytic approaches.   
In other words, we must be careful not to use one tool for 
every problem or else we run the risk of “forcing a square peg 
into a round hole” - to use a phrase from British novelist 
Edward Lytton.  

In this paper we survey several popular “Big Data” 
technologies and paired them with a handful of analytical 
case studies.  The technologies that we evaluated ranged 
from Hadoop MapReduce approaches, to RAM based 
platforms, to Bulk Synchronous Parallel techniques.  
Specifically, the following technologies were leveraged in our 
current work: 

• Hadoop Streaming (MapReduce) 
• Apache Hive (MapReduce) 
• Cascalog (MapReduce) 
• Mahout (MapReduce) 
• R (Radoop / RHadoop / rPy / R - MapReduce) 
• Giraph (Bulk Synchronous Parallel) 
• Spark (in-memory cluster computing) 

Given the technologies above, for each case study we 
attempted to match the most appropriate technology stack 
to the problem and provide both qualitative and quantitative 
evaluation as to their appropriate usage patterns.  Before 
describing each of these approaches, it is important to note 
that these are initial prototypes and that full optimization 

may not have been attained in each case.  However, 
reasonable effort was exercised in each case to optimize each 
approach wherever possible.   

As a baseline, we chose four disparate analytic models for 
analysis and implementation.  Each of these analytics served 
as an example implementation strategy and paradigm.  The 
use case analytic models chosen for evaluation are as follows: 

• N² Calculation – For the ultimate test of scaling 
behavior, we chose an analytic model that innately 
does not scale.  Problems that are O(N²) are certainly 
a challenge, especially due to data locality issues.  
For this experiment, we calculated the correlation 
co-efficient of a set of time series vectors against 
itself.  This was implemented with two approaches: 

o Brute Force on many different technology 
platforms  

o Approximation using Google’s published 
technique for Google Correlatei 

• Time Series – This use case is focused on data 
sources that are a time series.  The case study 
focused on an anomaly detection algorithm and 
leveraged Auto-Regressive Integrated Moving 
Average (ARIMA)ii. 

• Data Aggregation – Representative of the analysis 
typically done in the Business Intelligence (BI) world, 
this use case focused on applying aggregation 
techniques to tabular data.  Two primary techniques 
were specifically implemented: 

o Dwell Time 
o Aggregate Micropathing 

• Graph Traversal Analysis – To represent a network 
based structure and analytic, we also targeted a 
graph traversal based algorithm.  For this analytic, 
we used a time-based transaction network and 
analyzed it for time-restricted graph loop detection.   

2 Implementation 

In this section, we detail the various technical 
implementations for each of the case studies. 

2.1 N² Calculation 

This analytic was the simplest of our case studies and 
warranted an approach on a wide variety of Big Data 
technology platforms.  The core principle of the analytic is a 



full outer join of data against itself.  The dataset used for this 
study was the fictionalized VAST 2012 data, which contained 
the health status (an integer value) of various IP addresses at 
15 minutes intervals.  These health ratings were constructed 
into a vector, where each subsequent vector position 
denoted the health for the next 15 minute interval.  The 
length of each vector was 192 and we had 1 million IP 
addresses to sample from.  For analysis, we would pull 
different sized sets of IP addresses from this source dataset 
to evaluate scaling performance.  

The algorithm used for this was Pearson product-moment 
correlation coefficient and was applied for every unique 
pairing of IP addresses in a given set.  Pearson’s correlation 
ranges from -1 to +1 with 0 meaning no correlation, +1 
meaning perfect positive correlation, and -1 meaning perfect 
negative correlation.  Calculating this pairwise between all IP 
addresses in a given set poses an O(N²) problem and can also 
show how data locality affects performance.  

For simplicity and to provide an accurate baseline, this 
was first implemented in RAM by using a Python NumPy 
script.  All vectors were paired together in a matrix and sent 
into NumPy’s corrcoef function, which performs the 
calculation.  While this approach obviously doesn’t scale, it 
provided us a baseline of results. 

Apache Hive was our next implementation.  For this 
approach, we used Hive’s built in Hadoop streaming 
capability to parallelize the RAM based version of the 
problem.  First, all of the vectors were loaded into Hive – one 
row per vector.  Then, Hive performed a full outer join on all 
rows and sent the joined output to the same Python NumPy 
corrcoef function for evaluation and output.   

Mahout, which is a popular MapReduce based Artificial 
Intelligence library that runs on Hadoop, was the next choice 
for evaluation.  We chose this library for two reasons.  First, it 
was designed and optimized for this type of analysis.  
Secondly, it has a built-in Pearson’s matrix correlation engine.  
To complete this task, we simply took the vectors and loaded 
them into a Mahout formatted HDFS file and called Mahout’s 
“rowsimilarity” option with the 
SIMILARITY_PEARSON_CORRELATION argument selected to 
produce its results. 

Cascalog, a Clojure-based technology that has been 
gaining traction in industry, implemented a similar strategy to 
that of Hive by using a full outer join.  Each vector was sent in 
as a row and all rows were combined against one another.  
When the two vectors were combined, the Apache Commons 
Math library was then used to calculate correlation between 

the two vectors.  While leveraging a similar approach to Hive, 
the nature of the Lisp-inspired functional language yielded a 
completely different development experience. 

Giraph was the next technology to explore as it 
represented a fundamentally different approach using its 
Bulk Synchronous Parallel (BSP) methodology.  Giraph 
operates such that it takes in a graph of data, shards that 
data across the machines, and then elevates that entire graph 
in RAM for expedient calculation.  As such, each vector was 
loaded into a vertex within a graph and each vertex sent its 
data as a message to every other vertex with an ID higher 
than it (so as to prevent duplicated calculation).  Whenever a 
vertex receives a message with a vector of data, it uses the 
Apache Commons Math library to calculate the correlation 
between the received vector and its own data. 

Spark was the last technology that we used on this 
analytic use case.  Again, the full outer join strategy was used 
and the results were piped into the Apache Math Commons 
Library for evaluation.  Spark is Scala-based and provided a 
very natural interface for performing this join operation.   

 Finally, attempts were made to also build the analytic in 
the R-based RHIPE and RHadoop platforms.  However, after 
many repeated failed attempts to get these technologies to 
compile, build, and operate on a virtual machine with all of 
the previous technologies listed, this was abandoned.  This 
was largely due to the specific version requirements of 
technology stacks for each of these (version requirements for 
R, Java, Hadoop, etc) as well as other unrelated build 
problems.  The burdensome weight of the setup paired with 
the short timeframe convinced us to pass on these 
technologies for the moment – especially since they should 
exhibit similar performance to the other MapReduce 
approaches described above.  These technologies will be 
revisited in future work.  

 This case study was used both for the gathering of 
benchmarks and was also used to explore approximation 
methodologies as discussed in the Approximation and 
Evaluation section. 

2.2 Time Series 

This use case focused on how to analyze time series data on 
big data platforms.  The obvious approach to solve this 
problem application was simply to leverage a MapReduce 
framework around some time series analysis library.  In this 
case, we leveraged R to perform our time series analysis and 
wrapped it in a MapReduce architecture for parallelized 
execution.  Whereas the correlation engine compared time 



series vectors pairwise, the goal of this use case was to 
analyze each individual vector and discover anomalous 
activity.  For this, we used flight records data that provides 
the history of every airplane take-off and landing since 1987.  
Our goal was to detect when there were major events that 
disrupted air traffic travel.  Each vector represented an 
airport and each element within the vector represented the 
total number of flights that had taken off within that Year-
Month-Day-Hour.   

To determine anomalous activity, we decided to leverage 
autoregressive integrated moving average (ARIMA), since it 
incorporates both aspects of seasonality and moving 
averages.  The ARIMA was calculated for each vector using 
the (p,d,q) model parameters as automatically provide by the 
forecastiii library.  Then, standardized residuals were 
extracted and filtered to keep events that constituted a +/-4 
stddev to find the events. 

The vectors for each airport’s activity were first built and 
processed in Hive, but were then sent via Hadoop Streaming 
into a Python script that called the R based “forecast” library 
(which provided auto-fit for the p,d,q variables in the ARIMA 
model).  Thus, the ARIMA algorithm always ran on a single 
vector in a single thread, but Hadoop parallelized the job out 
to many threads – allowing a parallelization factor equal to 
the number of vectors in the dataset.  Again, this was ideally 
suited for a RHIPE / RHadoop implementation, but build and 
environment conflict issues prevented usage of those 
technologies.  Instead, the Python scripts read / wrote 
directly to and from R to process the data.  

The end results can be seen with graphs like the one 
shown in Figure 1, which shows how September 11, 2001 
registers as a major deviation from normal activities.  Also 
note the spike in residuals due to storm activity and 
Thanksgiving. 

 

Figure 1: ARIMA Event Detection 

2.3 Data Aggregation 

These use cases provided the most straightforward and well 
understood analysis problems in the parallelized 
environment.  Data warehousing technologies like Hive, Pig, 
Cascalog, Impala, and Spark’s Shark were all built for this type 
of purpose.  This is the “Sweet Spot” for the MapReduce 
architecture.  For this use case we performed two styles of 
data aggregation: dwell time analytics and aggregate 
micropathing 

2.3.1 Dwell Time Analytics 

For this use case, we took ship tracking data and analyzed it 
for places where vessels were stationary for prolonged 
periods of time.  To do this, we first gridded up the world into 
small boxes divided by latitude / longitude.  Then, we 
measure the overall time spent stationary in each of those 
boxes.  For example, if a vessel remained stationary in the 
grid box Bx,y  for a 15 minute period, then Bx,y would have a 
score in seconds of: 

Bx,y = Bx,y + (15*60) 

Thus, each grid cell captures the total “dwell” time spent by 
ALL ships within that grid cell.   

 This analytic was implemented with both a Hive and a 
Cascalog variant that are very similar in operation.  First, the 
raw data is ingested and sorted by vessel ID.  Next, for every 
vessel ID, its entire track is analyzed to extract out time spent 
stationary.  Finally, that stationary time is mapped to an 
overarching grid cell, which aggregates the total time spent. 

2.3.2 Aggregate Micropathing 

 

Figure 2: Aggregate micropathing example on Flickr data 

This analytic is used to extract aggregate movement profiles.  
For this analytic, we take any device data, such as vessel 
movement data or even public photo metadata, and extract 
overall patterns of movement.  Figure 2 shows this analytic as 
applied to the Flickr / Panoramio metadata in a prominent 



world city.  Red denotes high level of activity with frequent 
photos – allowing you to discover movement patterns within 
the city. 

 This analytic is built via a four stage process (simplified for 
ease of explanation as follows): 

1. Group all records associated with a device / vessel  
2. For each device, walk through each event ordinally 

and extract and filter line segments based on 
distance and time between events 

3. Grid an entire region with “triplines” and compare 
every line segment for crossings along any gridline 

4. Aggregate all tripline crossings across the entire grid  

This analytic was implemented using Hive, which took in the 
raw data and then runs Hadoop Streaming or native Hive jobs 
for each of the steps outlined above.   

2.4 Graph Traversal 

 

Figure 3: Enron email network 

Network data is the primary goal of this last use case.  While 
MapReduce may be efficient for extremely shallow breadth-
based graph traversals, tabular processing methodologies like 
MapReduce, traditionally do very poorly in the field of graph 
analysis.  This is especially the case when trying to perform 
operations with an indeterminate traversal depth.  As such, 
for this use case, we took the public Enron email dataset and 
created a graph where all vertices represent an email 
address.  The edges between pairs of vertices represent an 
email transaction between those two vertexes at a distinct 
point in time.  For the analysis, we want to find a graph 
traversal pathway from a Vertex A, such that all graph hops 
are subsequent to one another in time and such that they 
ultimately return to Vertex A.  For example, suppose we have 
a graph with Vertices A, B, C, D with the following edge list 

Source      Target     Date 
A               B              2012-09-01 
B               C              2012-09-02 
C               A              2012-09-03 
 
The edges above would form a graph loop A->B->C->A 
through time, since all edges occur subsequent to one 
another. 
  While this algorithm is difficult to realize in a MapReduce 
context, it is a completely natural fit for the Bulk Synchronous 
Parallel approach of Giraph or Spark’s Bagel.  As such, Giraph 
was used to load the Enron email graph (Figure 3 shows an 
image of that email network) into RAM and leverage BSP to 
solve this problem.  On the first superstep, each node 
broadcasts messages to each of its edges.  On every 
subsequent superstep, each vertex checks its incoming 
message’s dates and sees if it has any outgoing edges with a 
greater date to propagate forward.  If a message ever reaches 
the node that originally sent it out, then that message is 
halted and recorded as a loop.  Currently, the algorithm has a 
parameter that determines the depth of traversal that will be 
conducted.  Furthermore, random walks and graph sampling 
may be leveraged for greater efficiency. 

4 Approximation 

When initially building out the brute force correlation engine 
mentioned in Section 2.1, there was an important question as 
to how we would manage an algorithm that scaled up at 
O(N2).  For this, we looked to the work that Google 
performed when they built their system Google Correlate.  
Google Correlate is an engine that performs an 
approximation of the pairwise correlation at orders of 
magnitude faster than O(N2).  More information can be 
obtained by reading their publicationi.   

 To quickly recap the methodology, the incoming vectors 
are transformed through M x P Gaussian IID matrices and 
then run through k-means clustering.  Vector quantization on 
the vectors using those cluster center points then provide an 
approximate distance that can be compared to test series 
(thus providing a massive dimensionality reduction).  

 This capability was built up entirely within Spark (both the 
training and test capability), as we needed rapid and 
interactive response capabilities.  In the future, it might be 
possible to use Cloudera’s Impala technology as another 
alternative.  The engine allows any arbitrary vector (of the 
same length as the training vectors) to be inserted into the 
engine for analysis.  In real time, the engine will return all the 
vectors that were found to be closest via the approximation 
metric.   



 

5 Evaluation 

Evaluations on analytic runtimes, code complexity, and 
development time all are major factors when deciding how to 
implement a particular Big Data strategy.  This section aims to 
capture our observations of those factors. 

5.1 Quantitative Correlation Engine Metrics 

Building the correlation engine on many different platforms 
allowed us to calculate quantitative performance for each 
platform.  For this, we leveraged Amazon’s EC2 cloud to run 
our tests on the exact same hardware for each approach for 
comparative analysis.  The following hardware configurations 
were used: 

• 5 small instances 
• 10 small instances 
• 20 small instances 
• 5 high memory extra large 
• 5 high CPU extra large 

Additionally, to measure the scale-up behavior on each 
hardware profile, we used several different sized vector (4K, 
8K, 16K, 32K, 64K) matrices that we sent in for processing.  
Each approach was given no more than an hour to complete 
end to end and the time to completion for each approach was 
measured and recorded. 

5.1.1 Brute Force 

Figure 4, Figure 5, and Figure 6 below show the runtimes for 
each hardware configuration and technical approach.  Bars 
are left blank where the technology / hardware configuration 
exceeded the one hour time limit.  It can be seen that Giraph 
and Spark both perform the best – likely due to the fact that 
they both pull the data completely into RAM before 
processing.  None of the processes finished the 32K or 64K 
vector set and only Giraph and Spark made it to the 16K 
vector set on the largest machine configurations.   

Other observations to note are that when using Giraph, 
you want to use as FEW nodes as possible – where each node 
has the maximum amount of RAM you can put on it.   This is 
due to the network I/O hit at every BSP synchronization 
stage.  Conversely, MapReduce based implementations desire 
the opposite – providing as many spinning disks as possible 
attacking the problem will provide better speed and 
performance.   

Finally, it should be noted that Mahout works faster than 
its other MapReduce counterpart (Hive).  However, despite 
Mahout being optimized and built for the correlation 
problem, it scored as one of the worst performing 
configurations due to its MapReduce backing. 

 

Figure 4: Correlation runtimes for 4K vectors by hardware 
configuration 

 

Figure 5: Correlation runtime for 8K vectors by hardware 
configuration 



 

Figure 6: Correlation runtimes for 16K vectors by hardware 
configuration 

5.1.2 Approximation 

The approximation engine showed considerable 
improvement and speed-up when compared to the brute 
force methods.  Naturally, the better performance came at 
the cost of recall, but this at least allows the user to decide 
the correct balance between recall and time spent waiting for 
the calculation.   

The approximation engine fared much better in terms of 
scaling up using a K = 255, M = 8, and P = 8 on the Google 
Correlate algorithm.  However, it should also be noted that 
one should not keep these parameters the same as the data 
size increases.  Instead they should be adjusted upwards to 
prevent a loss in recall.  However, for the purpose of these 
benchmarks, the settings above were used and computed at 
every data size as seen in Figure 7. 

The most notable improvement is that we actually 
finished results on both the 32K vector and 64K vector sets.  
To demonstrate what speedup this was, we compared the 
best brute force times against the approximation engine and 
also included measured the speedup (using the same K, M, 
and P parameters above) and recall performance.   

 

Figure 7: Correlation runtimes by vector size using a Spark-based 
approximation engine 

 

Figure 8: Correlation approximation engine speedup and recall 

5.2 Qualitative Assessments and Observations 

Aside from the quantitative metrics, we gathered a lot of 
qualitative data on each of the technology stacks as well.  
Development time and code complexity each were major 
factors that are often overlooked in the evaluation of an 
analytic technique.  The following assessments are purely 
opinion in nature and based on the work of a few people on 
these key systems.  These experiences may not be 
representative of other people’s experiences with the same 
system – especially for those specializing in one particular 
system. 

5.2.1 MapReduce vs. Bulk Synchronous Parallel 

In general, a good rule of thumb is to use MapReduce for 
tabular operations (aggregations and jobs that are easy to 
split apart), but to use Bulk Synchronous Parallel (BSP) for any 
traversal operations (i.e.: graph and networks).  Some 
network algorithms that perform only a single traversal or 
two may be manageable in MapReduce, but the BSP 
framework will yield far less complex code overall and should 
be used instead. 



5.2.1 Technology Stack Overviews 

For MapReduce, we found Hive to be extremely efficient in 
terms of the # of lines of code and also development time.  
The development abstraction over writing a custom 
mapReduce job is worthwhile and saves much code and time.  
This does come at the cost of less flexibility and lower 
performance on the cloud (sometimes much lower 
performance for certain operations that are abstracted too 
much).  The code also tends to be messier and the pipeline 
for moving data between processes is ugly at best.  However, 
by far, this was the most straightforward and easiest solution 
for parallelizing problems with an obvious parallelization 
solution (whether you’re piping data into R, NumPy, or some 
other program).  For ad hoc analytics development, where 
the development of rapid analytics is the key, Hive is a clear 
choice for these situations (or at least to get started). 

Cascalog, a newer and more elegant option allows for 
pipelining of the data from beginning to end.  It also allows 
for much better modularity and maintenance of code.  Both 
of these are a significant advantage over Hive.  However, the 
development times for simple algorithms tended to be longer 
and the coded tended to be more complex.  The Lisp-based 
dialect also instills a steeper learning curve for those less 
inclined to the functional programming world.  Cascalog also 
imposes steep performance penalties for the abstraction that 
it provides – worse even than Hive in the cases we compared 
them.  That said, the elegance and maintainability should 
keep Cascalog as a consideration moving forward.  It is 
constantly being improved upon and its ability to pipeline 
data from beginning to end in a sane fashion is quite 
attractive.  As a final note, Cascalog was not benchmarked for 
the correlation engine as there were troubles configuring it to 
operate at scale.  Rather than risk showing an incorrect 
Cascalog performance metric, we decided to omit the 
Cascalog metrics we have until we can further optimize its 
execution.  This is an ongoing point of future work. 

While Mahout is a popular library, the code complexity 
required just to get data in and out of the system is very 
burdensome (and sometimes more code than the actual 
analytic you are trying to use!).  Mahout has a few nice 
capabilities, but many of its capabilities work far better in 
other platforms.  A good case in point is the iterative k-means 
clustering, which will work far better in something like Spark, 
which can hold intermediate state in RAM.  Mahout is useful 
for very specific classes of analytics and only operates in a 
MapReduce framework, which may not always be the best 
approach for the problem at hand.  That said, Mahout is 
useful when you need an implementation of some machine 
learning technique that someone has already implemented – 

if you can stomach writing endlessly annoying serialization / 
de-serialization code to get your data in and out. 

Giraph and Bagel are both great options for the BSP side of 
the world on graph processing.  The simplicity and ingenuity 
of the BSP compute method makes writing graph algorithms 
extremely simple.  Code complexity seems to be far less 
burdensome in Bagel because Giraph requires a lot of custom 
definition of input / output serialization procedures.  Bagel 
avoids a lot of the serialization procedures because it keeps 
everything in RAM.  

Spark showed as one of the most interesting solutions in the 
assessment.  Though it had a performance boost mainly 
thanks to the distributed memory, the elegance of the Scala 
code that was produced to build the analytics was 
astoundingly clean when compared to all the other options.  
Pair that with extremely fast computation time (especially for 
iterative operations, like k-means) and it makes for a very 
powerful system.  Bagel and Shark also exist on top of Spark 
which make the package even more attractive.  In all our 
tests, the Spark systems came out with the fastest results, 
cleanest code, and least development complexity. 

RHadoop and RHIPE look extremely promising, especially 
when installing them on a new system by themselves.  
However, trying to create an environment where these 
technologies work alongside all of the other technologies 
above can prove to be a challenge.  Version requirements, 
compiler issues, distributions, and other factors all played a 
role in what can be summed up as an installation nightmare.  
Provided they are installed on a system, the Divide and 
Recombine features should be useful – though probably only 
as a mirror to the other MapReduce process that can be done 
using the other technology stacks.  However, abstraction of 
these capabilities is certainly desired and further 
investigation and diligence is warranted in trying to get these 
technologies operational alongside the other systems. 

6 Future Work 

Future work would include measuring the scale-out potential 
on different hardware configurations for the Graph Loops, 
Time Series, and Aggregation techniques.  Additionally, 
current efforts are working to provide benchmarks on the 
correlation engine leveraging other technologies where 
appropriate, such as: 

• Spark’s Bagel 
• GPU CUDA 
• Storm (if we ever find streaming data) 
• Impala 



• RHIPE 
• Cascalog 
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